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In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular
lattices is presented, which is free of any interpolation or coarse graining step. The
scheme is derived using the axioma that the velocity moments of the equilibrium
distribution equal those of the Maxwell–Boltzmann distribution. The axioma holds
for both Bravais and irregular lattices, implying a single framework for LB schemes
for all lattice types. By solving benchmark problems we have shown that the scheme
is indeed consistent with convection diffusion. Furthermore, we have compared the
performance of the LB schemes with that of finite difference and finite element
schemes. The comparison shows that the LB scheme has a similar performance as the
one-step second-order Lax–Wendroff scheme: it has little numerical diffusion, but has
a slight dispersion error. By changing the relaxation parameterω the dispersion error
can be balanced by a small increase of the numerical diffusion.c© 2000 Academic Press
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1. INTRODUCTION

In the last decade lattice Boltzmann schemes have been successfully applied to the analy-
sis of a variety of complex physical phenomena, such as turbulent flow, natural convection,
and multi-phase flow [1–4]. However, less complicated phenomena like (convection) diffu-
sion have hardly been studied [5–8]. This is probably due to the vast reservoir of alternative
finite element and finite difference schemes, for solving the convection-diffusion problem.
But these simple phenomena are ideal for investigating ways to improve the LB methodol-
ogy [8]. Hence, in this paper we investigate whether the LB methodology can be extended
to irregular grids in a natural way.

The problem of irregular lattices has previously been addressed in a few papers [9–12],
using either coarse-graining or interpolation techniques. These techniques imply a signif-
icant departure from the traditional framework of the lattice Boltzmann scheme, thereby

766

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



CONVECTION-DIFFUSION LATTICE BOLTZMANN SCHEMES 767

losing its attractive properties. Moreover, these techniques exhibit significant numerical
diffusion and do not satisfy conservation laws [12].

In this paper we will derive the LB scheme for irregular lattices by applying the same
framework as for Bravais lattices, which is developed in Refs. [8, 13]. The key element of
this framework is that the velocity moments of the equilibrium particle distribution function
must equal those of the classical Maxwell–Boltzmann distribution.

For convection diffusion it is sufficient that the velocity moments up to second order are
satisfied [4]. In that case the scheme is Galilean invariant and will show little numerical
diffusion. It has been shown that the constraints for the velocity moments are satisfied for
highly symmetric lattices, such as the hexagonal lattice and the nine-velocity square lattice
[1, 4, 14].

For simplicity sake, we only consider lattices having lattice (Wigner–Seitz) cells with
only twofold rotational symmetry. Hereby, we extend our previous studies on convection-
diffusion problems on orthorhombic lattices [6, 7]. In this paper we include rest particles,
which are shown to give a major improvement to the accuracy of the scheme [4].

Before deriving the scheme for irregular lattices, we first apply the framework to derive the
convection-diffusion scheme for the orthorhombic lattice with rest particles. Subsequently,
the same framework is applied to derive the scheme for convection diffusion on 2-D irregular
lattices with rectangular lattice cells. Finally, the LB-schemes are compared with a number
of the traditional finite difference and finite element schemes using benchmark problems,
in order to assess the merits and shortcomings of the LB schemes.

2. LB SCHEME FOR ORTHORHOMIC LATTICES

In this section, a LB scheme is derived for convection diffusion on orthorhombic lattices.
For the convection-difussion problems considered in this paper we assume: (1) isotropic dif-
fusion and (2) an externally imposed velocity field, which is uniform and time independent.
Under these assumptions the convection-diffusion equation reads

∂tρg + u · ∇ρg = D∇2ρg. (1)

Hereρg is the convected physical quantity, which can be a mass density of a tracer or an
energy density (i.e., temperature),u is the velocity field, andD is the (thermal) diffusivity.

Lattice Boltzmann schemes describe convection diffusion by the time evolving particle
distribution functiongi (x, t). This function states the number density of particles at lattice
site x and timet moving with velocityci =1xi /1t along the lattice link connecting the
sitesx−1xi andx. The dynamics on the macroscopic scale is then obtained by summing
the particle distribution over all states; i.e., the density isρg(x, t)=

∑
i gi (x, t).

At each time step, the lattice gas particles propagate to neighbouring lattice sites, where
they collide with other particles. Furthermore, the particles can change their momentum
by interaction with externally imposed fields, such as the velocity field in the convection-
diffusion problem. The propagation and collisions of lattice gas particles are described by
the so-called lattice Boltzmann equation, which is a discretisation of the classical Boltzmann
equation, having a linearised collision integral. In its most general formulation the lattice
Boltzmann equation reads

gi (x+1xi , t +1t)− gi (x, t) =
∑

j

Äi j
[
gj (x, t)− geq

j (x, t)
]
. (2)
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Here,geq
i (x, t) is the local equilibrium distribution, which is invariant under collisions. The

operatorÄi j controls the collisions between the lattice gas particles. In the more simplified
case of the lattice-BGK scheme [14], the collision operator reduces toÄi j =−ωδi j . Because
of its computational simplicity this paper is restricted to the lattice-BGK scheme.

The local equilibrium distribution,geq
i (x, t), follows from the requirement that its velocity

moments must equal the moments of the classical Maxwell–Boltzmann distribution [13].
For second-order accurate solutions the following constraints have to be satisfied at each
lattice site for each cartesian componentα, β, cf. Ref. [4],∑

i

geq
i = ρg (3)

∑
i

ci,αgeq
i = j eq

α = ρguα, (4)

∑
i

ci,αci,βgeq
i = 5eq

αβ = ρgc2
sδαβ + ρguαuβ. (5)

Here jα is a component of the equilibrium mass flux density,5
eq
αβ is a component of the

equilibrium momentum flux density tensor, andcs is a free model parameter.
Because of our restriction to orthorhombic lattices, constraint Eq. (5) is not satisfied in

the case of flow fieldsu, which are not parallel to one of the principal axes of the lattice.
But for uniform flow fields, parallel to one of the principles axes of the lattice, the scheme
will be Gallilean invariant.

The form of the equilibrium distribution, compatible with the two-fold rotational sym-
metry of the orthorhombic lattice, and satisfying constraints Eqs. (3)–(5) forα=β, is given
by

geq
i = wiρg

[
1+ ci · u

c2
s

+ (ci · u)2
c2

i c2
s

]
if i 6= 0 (6)

g0 = ρg −
∑
i 6=0

geq
i (7)

with weight factors, satisfying
∑

iwi = 1, given by

wi = c2
s

2c2
i

if i 6= 0 (8)

w0 = 1−
∑
i 6=0

wi = 1− c2
s0

c2
s

. (9)

The indexi = 0 denotes rest particles. Becausew0 must be positive, the thermal velocitycs

can only be set to a value in the range 0≤ cs≤ cs0. Here,cs0 is the thermal velocity for a
lattice gas without rest particles.

By applying the Chapman–Enskog procedure, cf. [8], one obtains the expression for the
diffusion coefficient

D = c2
s

(
1

ω
− 1

2

)
1t (10)
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which is an identical expression as derived for diffusion [8], and hydrodynamics [1]. The
range of the relaxation parameter is 0≤ω≤ 2. However, in the range ofω<1 the scheme
is consistent with diffusion for a limited range of large time-scale and long wave-lengths
[8]. Hence, the practical range of the relaxation parameter is 1≤ω≤ 2.

3. LB SCHEME FOR IRREGULAR LATTICES

Starting from the assumption, as observed by Koelman [1], that the constraints for the
equilibrium fluxes also hold for irregular grids, a convection-diffusion LB scheme for
these grids is derived. Recall that we only consider irregular grids with twofold rotational
symmetry and 2d + 1 particle velocities, as sketched in Fig. 1. Furthermore, isotropic
diffusion and uniform time-independent flow fields are assumed.

The lattice gas particles associated with the particle density distributiongi (x, t) at lattice
sitex, are thought to be located within the Wigner–Seitz cell. This control volume is defined
as the lattice cell with boundaries at the midpoint of the lattice links1xi and normal to
these links. In the case of lattice links with opposite direction having unequal lengths, the
lattice site is not in the centre of the Wigner–Seitz cell. This is similar to the so-called cell
vertex finite volume method [18].

As in LB schemes on Bravais lattices, the particle velocities are defined byci =1xi /1t ,
so the particles always move to neighbouring lattice sites at subsequent time steps. For
irregular grids the velocities may vary with the location of the lattice site. Hence, we
denote the velocities as a function of their location:ci (x) = 1xi (x)/1t . Note that particles

FIG. 1. Irregular lattice with rectangular Wigner–Seitz cells (indicated with dashed lines). Also shown are the
pre-collision velocity vectors,ci (x) (i = 1, 2, 3, 4), of particles populating lattice sitex, located between regions
with different lattice spacing, i.e.,ci 6= ci∗.
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propagating from the same lattice site but in opposite direction may have different velocities,
i.e.,ci (x) 6= ci∗(x), with i∗ indicating the opposite direction ofi .

It proves to be more convenient to work with the particle number distributionNi (x, t)=
gi (x, t)1V(x), instead of the traditionally used particle number density distributiongi (x, t).
Here,1V(x) is the volume of the Wigner–Seitz cell surrounding lattice sitex.

Another important notice to make is that in normal physical practice, fluxes are really
defined only for the surfaces enclosing the control volume considered. Fortunately, for
regular lattices the definition of the equilibrium fluxes at the lattice site does not introduce
an error. But for irregular lattices this definition does produce an inconsistent scheme.

Hence, the constraints Eqs. (3)–(5) must be applied to the fluxes at the boundaries of the
Wigner–Seitz cell, surrounding the lattices site considered. The constraints for an irregular
lattice read as

M(x) =
∑

i

Neq
i (x) = ρg1V(x) (11)

0
eq
i (x) =

Neq
i (x)− Neq

i∗ (x−1xi )

1t
= ρg(x)(ei · u)1Si (x) (12)

Feq
i (x) =

ci (x)N
eq
i (x)+ ci∗(x−1xi )N

eq
i∗ (x−1xi )

1t

= [ρg(x)c2
s + ρg(x)(ei · u)2

]
1Si (x). (13)

Here,M(x) is the total mass of the particles in the Wigner–Seitz cell located atx. 0eq
i (x)

is the net equilibrium mass flux arriving atx through the surface area of the Wigner–Seitz
cell,1Si (x), located between lattice sitesx andx−1xi . Notice that lattice spacing1xi

depends on the locationx of the lattice cell. The unit vectorei = ci /ci indicates the direction
of the particle velocityci . Feq

i (x) is the force the lattice gas exerts on the boundary of the
Wigner–Seitz cell, midway between the lattice sitesx andx−1xi . Or in other wordsFeq

i (x)
is the the momentum flux arriving atx through the surface area1Si (x).

By dividing the mass flux0eq
i (x) and the momentum fluxFeq

i (x) by the surface area of
the Wigner–Seitz cell, one obtains respectively the equilibrium mass flux densityj eq

α (x)
and the equilibrium momentum flux density5eq

αα(x), crossing the particular boundary of
the Wigner–Seitz cell.

Starting from Eqs. (11)–(13) and the velocity set{ci (x)}, one obtains after some straight-
forward algebra, the expression for the equilibrium distribution,

Neq
i (x) = wi (x)ρg(x)1V(x)

[
1+ ci · u

c2
s

+ ci · u
c2

sc2
i

]
if i 6= 0 (14)

Neq
0 (x) = ρg(x)1V(x)−

∑
i 6=0

Neq
i (x) (15)

with the local weight factorwi (x) defined as

wi (x) = c2
s

ci (x)[ci (x)+ ci∗(x)]
. (16)

After recalling thatNeq
i = geq

i 1V , one observes that the expressions Eqs. (6)–(7) for the
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equilibrium particle density distributiongeq
i also hold for irregular grids. The effects of

variable lattice spacing are absorbed in the weight factorswi (x).
After having constructed the equilibrium distribution for irregular grids, we arrive at the

problem of how to define the lattice Boltzmann equation. This problem is not trivial, as
for irregular grids the traditional lattice Boltzmann equation for Bravais lattices, Eq. (2),
does not hold for irregular grids. This becomes evident when considering the case of global
equilibrium (ρg(x)= Neq

i (x)/1V(x)= ρ0). Clearly, a proper lattice Boltzmann equation
should leave the global equilibrium distribution invariant. This is clearly not the case for
Eq. (2) which requires thatNeq

i (x−1xi , t +1t)= Neq
i (x, t), which is generally not true

for irregular grids.
However, because of Eq. (12) invariance of the global equilibrium distribution is obtained

by

Neq
i∗ (x−1xi , t +1t) = Neq

i (x, t)− 0eq
i (x, t)1t. (17)

We assume that also for the general case, Eq. (17) describes the evolution of the equilibrium
part of the distribution function.

If the description of the evolution of the non-equilibrium part of the particle distribution,
Nneq

i = Ni − Neq
i , is also known, then we are able to construct the lattice Boltzmann equation

for irregular grids. This description can be obtained by observing the behaviour of the non-
equilibrium part of the particle distribution in the case of zero flow fieldu = 0 and a constant
density gradient,∇ρg(x)= constant.

For a regular lattice the non-equilibrium particle distribution of a density field with a
constant gradient is given byNneq

i =−1V(x)wi ci ·∇ρg1t/ω, cf. Ref. [8]. This expression
is independent of the lattice spacing. Analysis shows that this expression is valid for irregular
grids as well. Hence, the non-equilibrium part of the particle distribution should evolve in
the same way for both regular and irregular grids, as is described by

Nneq
i∗ (x−1xi , t +1t) = (1− ω)Nneq

i∗ (x, t). (18)

By adding Eqs. (17)–(18), one finally arrives at the complete lattice Boltzmann equation
for irregular grids

Ni∗(x−1xi , t +1t) = Neq
i (x, t)− 0eq

i (x, t)1t + (1− ω)Nneq
i∗ (x, t). (19)

Here, the equilibrium distribution is given by Eqs. (14)–(15), the equilibrium mass flow
is given by Eq. (12), and the non-equilibrium distribution function is given byNneq

i (x)=
Ni (x)− Neq

i (x). The expression for the diffusion coefficient, Eq. (10), also holds for irreg-
ular lattices.

Notice that for regular grids,Neq
i (x, t)−0eq

i (x, t)1t = Neq
i∗ (x, t), and consequently

Eq. (19) becomes identical to the lattice-BGK scheme, which is obtained by settingÄi j =
ωδi j in Eq. (2).

4. NUMERICAL ANALYSIS

The consistency and accuracy of the LB scheme for both regular and irregular grids
are analysed numerically. The analysis is done by comparing numerical solutions to the
analytical solutions of some benchmark problems. These benchmarks are:
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• The 1-D steady state problem with inhomogeneous boundary conditions and uniform
flow field.
• The 1-D transient problem with a Gaussian hill as an initial density field in a uniform

flow field.

4.1. Gradient resolution. In order to observe the behaviour of the lattice Boltzmann
scheme at boundaries with steep gradients, we solve a 1-D benchmark problem consider-
ing inhomogeneous boundary conditions and a uniform flow field (u). With the boundary
conditions denoted asρ(0)= ρl andρ(L)= ρr , the solution of the benchmark reads as

ρ(x) = ρl + (ρr − ρl )
[1− exp(Pe· x/L)]

[1− exp(Pe)]
. (20)

HerePe= uL/D is the Peclet number. For Peclet numbersPe≥ 0.1 the density field has
a steep gradient near the right boundary. These gradients are known to induce numerical
oscillations in various numerical schemes. Hence, this benchmark is a good test for the
ability of the LB scheme to resolve steep gradients.

The benchmark is solved for the case ofL = 20, 1x= 1, 1t = 1, ρg(0)= 200, and
ρg(L)= 100. The velocity field is uniform and positiveu(x)= u> 0. The boundary condi-
tions are imposed by the following constraints at the exterior lattice sites,∑

i

gi (x = 0) = 200, and
∑

i

gi (x = L) = 100. (21)

The implementation of these boundary conditions is straightforward: after collision and
propagation, new lattice gas particles have to be injected into the computational domain.
The amount of particles to be injected is determined by the constraints of Eq. (21).

Furthermore, we have set the thermal velocityc2
s = 1

2, the grid Fourier numberFo∗=
D1t/1x2= 0.1, and the grid Peclet numberPe∗ = u1x/D= 0.1, 0.5, 1, 5. The numerical
solutions together with the analytical solutions are shown in Fig. 2a. Observing these results

FIG. 2. Comparison of numerical solution (symbols) with analytical solution (lines) for boundary value prob-
lemρg(0)= 200 andρg(L)= 100, withL = 20. (a) The solution for a Bravais lattice with lattice spacing1x= 1
and grid Peclet numberPe∗ = 0.1, 0.5, 1, and 5. (b) The solution for an irregular lattice, which is graded from1x= 2
(nearx= 0) to1x= 0.1 (nearx= L). Here the grid Peclet number assumes the valuesPe∗ = 0.1, 0.2, 0.5, 1.0, 2.0,
5.0, 10.0. Note the numerical oscillations in the upper right corner of Fig.2a, induced by the steep gradient near
the boundary.
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one sees that the LB scheme quite accurately resolves the analytical solution for low grid
Peclet numbers,Pe∗ ≤ 1. At higher grid Peclet numbers spurious oscillations occur, which
are induced by the sharp gradient at the right boundary.

The magnitude of the spurious oscillations can be decreased a little by loweringcs or
increasing the Courant numberCr= u1t/1x, but the effect cannot be eliminated.

The benchmark is also solved using a lattice-BGK scheme for an irregular lattice, which
is refined at the right boundary. The lattice spacing is varied from1x= 2.0 (x= 0) to
1x= 0.1 (x= L). Because the lattice spacing varies, the grid Peclet and Fourier numbers
vary with the locationx, i.e.,Pe∗ =Pe∗(x) andFo∗ =Fo∗(x). Hence, if in the text below
we refer to the grid Peclet and Fourier numbers, it is implied it is with reference to the unit
lattice spacing1x= 1 (if not stated otherwise).

The parameter settings of the previous calculations are maintained:c2
s = 1

2 andFo∗ = 0.1.
The Peclet numberPe∗ is varied from 0.1 to 10. The numerical solutions are depicted in
Fig. 2b, together with the analytical solutions.

Figure 2b shows that by using grid refinements numerical oscillations are eliminated,
even at high Peclet numbersPe∗ À 1. By decreasing the lattice spacing1x at locations
with steep gradients one lowers the local grid Peclet numberPe∗(x)= u1x(x)/D to the
regime ofPe∗(x)≤ 2, where no oscillations occur. If the gradient is small, the local grid
Peclet number can be large.

4.2. Transient behaviour.The transient behaviour of the lattice Boltzmann scheme is
investigated by solving a 1-D benchmark problem of a Gaussian hill in a uniform velocity
field. The numerical solution is calculated by the LB scheme on a regular lattice. The
consistency and stability of the scheme is analysed with the method of moments, by which
errors in phase velocity, diffusion, and symmetry of the Gaussian hill are calculated.

The solution of this benchmark is given by

ρ(x) = ρ0
exp[−(x− x0)

2/2σ 2(t)]√
2πσ(t)

. (22)

Here,ρ0 is the initial height of the Gaussian hill,x0 is the initial position, andσ0 the initial
width of the hill. Hence, the initial Gaussian profile is described by

ρg(x, 0) = ρ0 exp
[−(x − x0)

2
/

2σ 2
0

]
. (23)

Method of moments.The density profiles after a travel timet are analysed using the
method of moments [15]. The moments of the density field are defined as

M0(t) =
∫
ρg(x, t) dx ≈

∑
n

ρg(n1x, t)1x, (24)

M1(t) =
∫

xρg(x, t) dx ≈
∑

n

xρg(n1x, t)1x, (25)

M2(t) =
∫
(x − µ)2ρg(x, t) dx ≈

∑
n

(x − µ)2ρg(n1x, t)1x, (26)

M3(t) =
∫
(x − µ)3ρg(x, t) dx ≈

∑
n

(x − µ)3ρg(n1x, t)1x. (27)
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The moments of a Gaussian distribution, travelling with velocityu, are equal to

M0(t) = M0, (28)

M1(t)/M0 = µ(t) = x0+ ut, (29)

M2(t)/M0 = σ 2(t) = σ 2
0 + 2Dt, (30)

M3(t)/M0 = S(t) = 0. (31)

From the change in time of the mean value, one can obtain the error in the average flow
velocityδû= [µ(te)− x0]/te. The error in the diffusivityδ D̂, i.e., the numerical diffusivity,
is obtained from

δ D̂ =
[
σ 2(te)− σ 2

0

]
2te

− D. (32)

The third-order moment is related to the skewness of the distribution. The error in skewness
is [15]

δŜ= S(t)

6teM0
. (33)

The benchmark is solved on a Bravais lattice with a lattice spacing1x= 1 and 128 lattice
spacings long. The timestep is set to1t = 1. Initially, the center of the Gaussian profile is
located atx0= 32. Other parameters are set equal toσ 2

0 = 8 andρ̃0= 100.
The initial particle distribution corresponding with the initial Gaussian hill is set equal

to the first-order perturbation distribution, as derived in Ref. [8],

gi (x, t = 0) = geq
i (ρg)− wi

1t

ω
(ci − u) · ∇ρg(x, t = 0), (34)

whereω is the collision frequency defined in Eq. (19). At the boundaries of the lattice,
periodic boundary conditions are applied.

Two sets of calculations are performed: (1) at a moderate grid Peclet numberPe∗ = 10,
and (2) at a high grid Peclet numberPe∗ = 1000. There are two free parameters in the LB
scheme, which are varied in our analysis: the Courant number in the range ofCr= u1t/1x
between 0.01≤Cr≤ 1, and the relaxation parameter between the range of 1≤ω<2. The
range ofω<1 is not investigated, as it is known from our previous study [8] that in this
regime inconsistency with diffusion can occur already at moderate gradients.

The density profiles at timete= 401x/Cr have been analysed using the method of
moments. The errors in the diffusivity and the skewness,δ D̂ andδŜ, found with the method
of moments, are plotted in Fig. 3 as a function of the relaxation parameterω and the
Courant numberCr. The error in velocity is not shown, as the velocity calculated from
the first moment is found to be equal to the pre-set valueu up to machine accuracy for all
simulations.

Observing Fig. 3, one sees that the numerical diffusion is small for low values ofω and
Cr. For the caseω = 1 the error is zero (up to machine accuracy) for both cases ofPe∗ = 10
andPe∗ = 1000. The errorδ D̂ increases forω→ 2 or Cr→ 1. The increase in numerical
diffusion is accompanied with an decrease of the skewnessδŜ, which is preferable for
calculations with high grid Peclet numbers.
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FIG. 3. Contour plots of the errors in diffusivity and skewness of the lattice Boltzmann scheme using the
method of moments for the casesPe∗ = 10 andPe∗ = 1000. The relaxation parameter is varied in the range 1≤ω<2
and the Courant number in the range 0.01<Cr≤ 1. The diffusivity error is in %, and the plotted value of the
skewness is 100 timesδŜ. The regions of instability are also indicated.

There are some limits for the values ofω andCr due to instability of the LB scheme
(the spurious oscillations grow exponentially). At high values ofω two regions of stability
remain, i.e.,Cr→ 0 andCr→ 1. At Pe∗ = 10 the region ofCr→ 1 is extremely small and
at Pe∗ = 1000 the region ofCr→ 0 is extremely small. Therefore, they are not shown in
Fig. 3. For any value of the Courant number, there is a range of values forω which gives
stable results. By a suitable choice ofω, any combination of the grid Peclet numberPe∗

and Courant number (satisfying the CFL-condition|Cr| ≤1) can be reached with the lattice
Boltzmann scheme.

5. COMPARISON WITH TRADITIONAL SCHEMES

In order to assess the merits and shortcomings of the LB scheme, its solution of the
above investigated benchmark is compared to those of traditional numerical schemes. The
following schemes are used: standard Galerkin (which is equivalent with the finite difference
scheme with central differencing in space and forward differencing in time), denoted as
CDFD; finite difference scheme with “optimal” upwinding and forward differencing in
time (FD+) [16]; finite element scheme with first-order streamline upwinding and implicit
time integration (SUPG); and a Galerkin finite element scheme with quadratic elements and
Adams–Bashfort (semi-implicit) time integration (ABG).

It must be noted that the FD+ scheme is equivalent to a second-order one-step Lax–
Wendroff scheme [18, 19]. Furthermore, it isalsoequivalent to the lattice Boltzmann scheme
with the relaxation parameter set toω= 1, as we show in the Appendix. The solutions of
the FD+ scheme are actually calculated with our lattice Boltzmann code. The solutions of
the other traditional numerical schemes are obtained by using the general purpose finite
element package FIDAP [17].
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TABLE I

Diffusivity and Skewness Errors andL2-Norm of Various Schemes

Pe∗ Scheme δ D̂/D (%) δŜ (%) L2 norm

10 CDFD −100.00 1.60 0.528
10 FD+ 0.00 1.40 0.168
10 LB 0.44 0.25 0.033
10 ABG 1.50 0.02 0.006

1000 SUPG 45835.00 6.28 0.968
1000 FD+ −0.03 5.58 0.449
1000 LB 0.43 0.84 0.159
1000 ABG 4.64 6.64 0.066

All above-mentioned numerical schemes, except ABG, are low-order schemes (first or
second order in space and/or time). ABG is a high-order scheme (fourth order in space
and second order in time) and is similar to the more familiar Crank–Nicolson Galerkin
scheme.

The benchmark problem is solved for the casePe∗ = 10 andCr= 0.2, and the case
Pe∗ = 1000 andCr= 0.4. The solutions of the LB scheme are calculated using the values
ω= 1.8 in the case ofPe∗ = 10 andω= 1.4 in the case ofPe∗ = 1000. The values of the
relaxation parameter are well within the region of stability and show little skewness (see
Fig. 3).

The simulation results are shown in Fig. 4 and Table I. Figure 4 shows the Gaussian
profile at timet = 40/Cr. The errors in diffusivity and skewness are calculated with the
method of moments and are listed in Table I. Furthermore, we have calculated theL2-norm
as a measure of the overall accuracy. We have defined theL2-norm as

L2 =
√(

N∑
i=1

|ρg(xi )− ρ̂g(xi )|2/N

)
. (35)

Hereρg(xi ) is the exact solution at grid pointxi andρ̂g(xi ) is the numerical solution.
As indicated in Fig. 4 and Table I, the standard low-order finite difference and finite

element schemes (CDFD and SUPG) clearly show the problems that can arise when solving
transient convection-diffusion problems: the numerical scheme either shows large spurious
oscillations, or has large numerical diffusion, resulting in a poor overall accuracy.

Better performance is obtained by the FD+ scheme and the lattice Boltzmann scheme.
Both schemes have little or zero numerical diffusion, but have numerical oscillations due
to dispersion errors. This behaviour is typical for a second-order scheme.

The accuracy of the lattice Boltzmann scheme can be improved over that of the FD+
scheme by choosing an appropriate value for the relaxation parameterω. Hereby, the nu-
merical oscillations are reduced at the expense of a little numerical diffusion.

The overall accuracy of the high-order scheme (ABG) is one order better than all other
lower-order schemes. The ABG scheme has little numerical diffusion and dispersion errors
(which is an effect of the odd-order truncation error, and hence, is absent in the fourth-order
ABG scheme).

Irregular lattice. The transient 1-D benchmark is also solved on an irregular grid, for
the lattice Boltzmann scheme, the Lax–Wendroff scheme (FD+), and the ABG scheme.
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FIG. 4. Comparison of numerical solution (symbols and dashed lines) with analytical solution (solid lines)
for the transient 1-D benchmark problem. The LB scheme is compared with various other schemes for grid Peclet
numbers and Courant numders: (1)Pe∗ = 10 andCr= 0.2 (left side of figure), and (2)Pe∗ = 1000 andCr= 0.4
(right side of figure). For these two cases the values of the relaxation parameter of the LB scheme are respectively
ω= 1.8 andω= 1.4.

The locations of the nodes of the irregular gridxn are specified by

xn = n for n = 0, 1, . . . ,64, (36)

xn+1− xn = 0.75+ 0.5 cos[π(n− 64)/128] forn = 65, . . . ,196. (37)
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FIG. 5. Numerical solution (symbols and dashed lines) and analytical solution (solid lines) for the transient
1-D benchmark problem using an irregular grid. Solutions are shown for timest = 40/Cr (left peak) andt = 80/Cr
(right peak). The ABG scheme is solved with the grid Peclet numberPe∗ = 100 and the Courant number ofCr= 0.2.
The LB scheme is solved with the grid Peclet numberPe∗ = 100, and various Courant numbers and relaxation
parameter values, as indicated in the legend of the graphs.

The solution is computed for the grid Peclet numberPe∗ = 100. In Fig. 5 the solutions of
the various schemes are depicted for time stepst = 40/Cr andt = 80/Cr.

From Fig. 5 and Table II, one can see that the behaviour of the various schemes is similar
for regular lattices and irregular grids. The second-order schemes (Lax–Wendroff and LB)
show numerical oscilations and the high-order scheme (ABG) shows improved accuracy
with little dispersion errors. Again the LB scheme performs better than the Lax–Wendroff

TABLE II

L2-Norm of Benchmark Solution on Irregular

Grid for Various Schemes

t Scheme L2 norm

40/Cr LB(ω= 1.0) 0.295
LB(ω= 1.4) 0.073
LB(ω= 1.8) 0.129
ABG 0.017

80/Cr LB(ω= 1.0) 0.631
LB(ω= 1.4) 0.184
LB(ω= 1.8) 0.211
ABG 0.014
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scheme. The results concerning the overall accuracy indicate there are some optimal values
for the relaxation parameter and Courant number. It is left to the reader to investigate how
to find these values for his type of problem.

6. PERFORMANCE OF THE LB SCHEME IN 2-D

The performance of the LB scheme is also investigated for two-dimensional lattices.
Hence, the benchmark of the propagation of a Gaussian profile in a uniform velocity field
is solved for both regular and irregular 2-D lattices.

The benchmark is solved for the following parameter setting:Pe∗ = 100, Cr= 0.1,
ω= 1.4, andσ 2

0 = 8. The direction of the uniform velocity field is taken at an angle
with the principle axes of the lattice, i.e.,u= u(êx + 1

2êy). In this way the occurrence
of crosswind diffusion can be investigated. Surface plots of the Gaussian profile at time
t = 20/Cr are shown in Figs. 6 and 7 for the Bravais lattice and the irregular grid, respec-
tively.

By calculating the moments from the simulation results, using

M2,xx =
∑

x

∑
y

(x − µx)
2ρ(x, y) (38)

M2,yy =
∑

x

∑
y

(y− µy)
2ρ(x, y), (39)

the diffusion coefficientsDxx and Dyy in x- and y-direction are estimated. For both the
Bravais lattice and the irregular grid it is found thatDxx= Dyy= 0.001, implying that
diffusion is isotropic and numerical (crosswind) diffusion is insignificant.

FIG. 6. Gaussian profile att = 20/Cr on a Bravais lattice, solved with the LB scheme. The centre of the
profile is located at (16, 16) att = 0 and has the velocityu= (1, 1

2
). Other parameter settings arePe∗ = 100 and

Cr= 0.1.
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FIG. 7. Gaussian profile att = 20/Cr on an irregular 2-D grid, solved with the LB-scheme. The centre of the
profile is located at (16, 16) att = 0 and has the velocityu= (1, 1

2
). Other parametersettings arePe∗ = 100 and

Cr= 0.1.

7. CONCLUSIONS

In this paper, a convection-diffusion lattice Boltzmann scheme for irregular grids is
presented. Like the LB schemes for Bravais lattices, our scheme follows the traditional
two-step mechanism of (1) the collision of lattice gas at the lattices sites, and subsequently
(2) the propagation to adjacent lattice sites. Hence, there is no need of any interpolation
step or coarse graining step, which is needed in previous attempts to map the LB scheme
to irregular grids [12].

The scheme for irregular grids is derived using the same framework, which is traditionally
used to derive LB schemes for Bravais lattices [1, 4, 8, 13]. The keypoint of this framework is
that velocity moments of the equilibrium distribution equal those of the classical Maxwell–
Boltzmann distribution.

By solving benchmark problems we have shown that our schemes are consistent with
convection diffusion for both regular and irregular grids. It must be noted that we have
tested the consistency for only uniform flows. In subsequent papers we will investigate
these schemes for the more general case of non-uniform flows.

The behaviour of the LB schemes is similar to second-order finite volume/difference
schemes, like the Lax–Wendroff scheme. (Even more, we have shown that the LB scheme
is identical to the Lax–Wendroff scheme in the case of the relaxation parameter set toω= 1.)
The convection-diffusion LB scheme has little numerical diffusion, but has some numerical
dispersion. This behaviour is typical for a second-order scheme. The numerical dispersion,
induced by sharp gradients, can be reduced by an appropriate choice of the relaxation
parameter or by lattice refinements. Its accuracy has shown to be less than that of higher-
order finite element schemes, but is obtained at much lower computational costs. Hence,
for (3-D) problems with a large computational domain or with a complicated geometry the
simple and straightforward lattice Boltzmann scheme can be a valuable choice.

The equivalence of the lattice Boltzmann scheme with the Lax–Wendroff scheme is a
theme worthy of further investigation. This might reveal the relationship of the LB scheme
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with other numerical schemes and may eventually lead to the crossover of ideas and concepts
between the two research areas, which still evolve independently.

Finally, we point out the value of studying simple physical phenomenon like (convection)
diffusion with the lattice Boltzmann method. These problems are ideal for investigating
fundamental aspects of the LB methodology and further extensions to it. As such, we have
been able to extend the traditional methodology to irregular grids. Likewise, other extensions
of the methodology like variable timestepping, boundary conditions, and adaptive grids,
etc., can be studied. Once established for simple physical phenomena, it can take little effort
to apply these extensions to more complicated phenomena like hydrodynamics.

Hence, the LB schemes presented in this paper can be the starting point for more complex
schemes like (1) third-order accurate convection-diffusion schemes (for regular and irregular
grids), and (2) hydrodynamics schemes for irregular grids. Both these schemes require that
third-order velocity moments are satisfied. These constraints can be satisfied by taking a
larger particle velocity setci (for a 2-D lattice a 13-velocity set with rest particles will
probably suffice). If these schemes can be established, they will mean a major step in the
further development of the lattice Boltzmann method.

APPENDIX: RELATION WITH FINITE DIFFERENCE SCHEMES

The lattice-BGK scheme is identical to a Lax–Wendroff finite difference scheme, if the
relaxation parameter is set equal toω= 1. Below, this relation is shown for a 1-D Bravais
lattice. In this case the diffusion coefficient is given byD= 1

2c2
s1t , and the grid Fourier

number is equal toFo∗ = 1
2c2

s/c
2
i . The Courant number is defined asCr= u/ci .

The change of density in time at lattice sitex is described by

ρg(x, t +1t) =
∑

i

gi (x, t +1t) =
∑

i

geq
i (x − ci1, t)

= geq
1 (x −1x, t)+ geq

0 (x, t)+ geq
2 (x +1x, t). (40)

With c2
s0= c2

i , the equilibrium distribution functions are

geq
0 (x) = ρg(x)[1− 2Fo∗ − Cr2] (41)

geq
1 (x −1x) = ρg(x −1x)

[
Fo∗ + 1

2
Cr+ 1

2
Cr2

]
(42)

geq
2 (x +1x) = ρg(x +1x)

[
Fo∗ − 1

2
Cr+ 1

2
Cr2

]
. (43)

After substitution in Eq. (40) it follows that

ρg(x, t +1t)− ρg(x, t)

=
(

Fo∗ + 1

2
Cr2

)
[ρg(x +1x, t)+ ρg(x −1x, t)− 2ρg(x, t)]

− 1

2
Cr[ρg(x +1x, t)− ρg(x −1x, t)]. (44)

This expression is identical to the finite difference scheme with “so-called” optimal up-
winding [16], which is actually a one-step second-order Lax–Wendroff scheme [19].
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In the limit of low Courant numbers (Cr→ 0), the Lax–Wendroff scheme is identical with
the forward time central space differencing. Whereas, in the opposite limit of high Courant
numbers (Cr→ 1), this scheme is identical with forward time full upwind differencing.
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